Qus : 1
2 The expression t a n A 1 − c o t A + c o t A 1 − t a n A can be written as
1 sinA cosA + 1 2 secA cosecA + 1 3 tanA + cotA 4 secA + cosecA Go to Discussion
Solution
Qus : 2
1 Angle of elevation of the top of the tower from 3
points (collinear) A, B and C on a road leading to the
foot of the tower are 30°, 45° and 60°, respectively.
The ratio of AB and BC is
1 √ ( 3 ) : 1 2 √ ( 3 ) : 2 3 1 : √ ( 3 ) 4 2 : √ ( 3 ) Go to Discussion
Solution According to the given information, the figure should be as follows.
Let the height of tower = h
Qus : 4
3
Largest value of c o s 2 θ − 6 s i n θ c o s θ + 3 s i n 2 θ + 2 is
1 4 2 0 3 4 + √ 10
4 4 − √ 10
Go to Discussion
Solution Qus : 5
1
Number of point of which f(x) is not differentiable f ( x ) = | c o s x | + 3 in [ − π , π ]
1 2 2 3 3 4 4 None of these Go to Discussion
Solution
Points of Non-Differentiability of f ( x ) = | cos x | + 3
Step 1: cos x is differentiable everywhere, but | cos x | is not differentiable where cos x = 0 .
Step 2: In the interval [ − π , π ] , we have:
cos x = 0 ⇒ x = − π 2 , π 2
So f ( x ) = | cos x | + 3 is not differentiable at these two points due to sharp turns.
✅ Final Answer:
2 points
Qus : 6
2 If A > 0, B > 0 and A + B = π 6 , then the minimum value of t a n A + t a n B
1 2 √ 3 − 2 √ 3
3 2 √ 3
4 √ 2 − √ 3
Go to Discussion
Solution On differentiating x= tanA + tan(π/6-A)
we get :
dx/dA = sec²A-sec²(π/6-A)
now putting
dx/dA=0
we get
cos²(A) = cos²(π/6-A) so 0≤A≤π/6
therefore
A=π/6-A from here we get A = π/12 = B
so minimum value of that function is
2tanπ/12 which is equal to 2(2-√3)
Qus : 8
3 If c o s e c θ − c o t θ = 2 , then the value of c o s e c θ is
1 5/2 2 3/5 3 4/5 4 5/4 Go to Discussion
Solution Qus : 9
1 The solution of the equation 4 cos 2 x + 6 sin 2 x = 5 are
1 x = n π ± π 4
2 x = n π ± π 3
3 x = n π ± π 2
4 x = n π ± 2 π 3
Go to Discussion
Qus : 10
4 The value of tan ( π 4 + θ ) tan ( 3 π 4 + θ ) is
1 -2 2 2 3 1 4 -1 Go to Discussion
Solution
We are given:
Evaluate tan ( π 4 + θ ) ⋅ tan ( 3 π 4 + θ )
✳ Step 1: Use identity
tan ( A + B ) = tan A + tan B 1 − tan A tan B
But we don’t need expansion — use known angle values:
tan ( π 4 + θ ) = 1 + tan θ 1 − tan θ
tan ( 3 π 4 + θ ) = − 1 + tan θ 1 + tan θ
✳ Step 2: Multiply
( 1 + tan θ 1 − tan θ ) ⋅ ( − 1 + tan θ 1 + tan θ )
Simplify:
= ( 1 + tan θ ) ( − 1 + tan θ ) ( 1 − tan θ ) ( 1 + tan θ ) = ( tan 2 θ − 1 ) 1 − tan 2 θ = − 1
✅ Final Answer:
− 1
Qus : 11
4 If sin x = sin y and cos x = cos y , then the value of x-y is
1 π / 4 2 n π / 2 3 n π 4 2 n π Go to Discussion
Solution
Given:
sin x = sin y and cos x = cos y
✳ Step 1: Use the identity for sine
sin x = sin y ⇒ x = y + 2 n π or x = π − y + 2 n π
✳ Step 2: Use the identity for cosine
cos x = cos y ⇒ x = y + 2 m π or x = − y + 2 m π
? Combine both conditions
For both sin x = sin y and cos x = cos y to be true, the only consistent solution is:
x = y + 2 n π ⇒ x − y = 2 n π
✅ Final Answer:
x − y = 2 n π for n ∈ Z
Qus : 12
1 If a 1 , a 2 , a 3 , . . . a n , are in Arithmetic Progression
with common difference d, then the sum ( s i n d ) ( c o s e c a 1 . c o s e c a 2 + c o s e c a 2 . c o s e c a 2 + . . . + c o s e c a n − 1 . c o s e c a n ) is equal to
1 c o t a 1 − c o t a n
2 s i n a 1 − s i n a n
3 c o s e c a 1 − c o s e c a n
4 a 1 − a n
Go to Discussion
Solution Qus : 13
2 In a ΔABC, if tan 2 A 2 + tan 2 B 2 + tan 2 C 2 = k , then k is always
1 > 1 2 ≥ 1 3 =2 4 =1 Go to Discussion
Solution Qus : 14
3 The general value of θ , satisfying the equation sin θ = − 1 2 , tan θ = 1 √ 3
1 n π + π 6 , n ∈ I
2 n π + ⟮ − 1 ⟯ n ( 7 π 6 ) , n ∈ I
3 2 n π + 7 π 6 , n ∈ I
4 2 n π + 11 π 6 , n ∈ I
Go to Discussion
Qus : 15
1 If
then the value of
is
1 38/3 2 38 3 114 4 None of these Go to Discussion
Solution Qus : 16
4 If tan x = - 3/4 and 3π/2 < x < 2π, then the value of sin2x is
1 7/25 2 -7/25 3 24/25 4 -24/25 Go to Discussion
Solution
Qus : 17
3 The value of tan 9 ∘ − tan 27 ∘ − tan 63 ∘ + tan 81 ∘ is equal to
1 5 2 3 3 4 4 6 Go to Discussion
Solution Qus : 18
3 If cosθ = 4/5 and cosϕ = 12/13, θ and ϕ both in the fourth quadrant, the value of cos( θ + ϕ )is
1 -16/65 2 -33/65 3 33/65 4 16/65 Go to Discussion
Solution
Qus : 20
3 Express (cos 5x – cos7x) as a product of sines or cosines or sines and cosines,
1 2 cos4x cosx 2 2 sin 4x sin x 3 2 sin 6x sin x 4 2 cos 6x cos x Go to Discussion
Solution
Qus : 21
2 If 32 tan 8 θ = 2 cos 2 α − 3 cos α and 3 cos 2 θ = 1 , then the general value of α =
1 n π ± π 3 2 2 n π ± 2 π 3 3 2 n π ± π 3 4 n π ± 2 π 3 Go to Discussion
Qus : 22
3 If |k|=5 and 0° ≤ θ ≤ 360°, then the number of distinct solutions of 3cosθ + 4sinθ = k is
NIMCET 2021
1 0 2 1 3 2 4 infinite Go to Discussion
Qus : 24
3 If a cos θ + b sin θ = 2 and a sin θ − b cos θ = 3 , then a 2 + b 2 =
1 6 2 5 3 13 4 10 Go to Discussion
Solution Qus : 25
3 The value of tan 1° tan 2° tan 3° ... tan 89° is:
1 0 2 1 √ 2 3 1 4 2 Go to Discussion
Solution Qus : 26
2 If P = s i n 20 θ + c o s 48 θ then the inequality that holds for all values of is
1 P ≥ 1
2 0 < P ≤ 1
3 1 < P < 3
4 0 ≤ P ≤ 1
Go to Discussion
Solution Qus : 27
2 If s i n x + a c o s x = b , then | a s i n x − c o s x | is:
1 √ a 2 + b 2 + 1
2 √ a 2 − b 2 + 1
3 √ a 2 + b 2 − 1
4 None of above Go to Discussion
Solution Qus : 28
1 If 0 < x < π and c o s x + s i n x = 1 2 , then the value of tan x is
1 4 − √ 7 3 2 4 + √ 7 3 3 1 + √ 7 4 4 1 − √ 7 4 Go to Discussion
Solution Qus : 29
1 If tan A - tan B = x and cot B - cot A = y, then cot (A - B) is equal to
1 1 x + 1 y 2 1 x − 1 y 3 − 1 x + 1 y 4 − 1 x − 1 y Go to Discussion
Solution Qus : 30
3 The value of sin 20° sin 40° sin 80° is
1 1 2 2 √ 3 2 3 √ 3 8 4 1 8 Go to Discussion
Solution Qus : 31
3 In a right angled triangle, the hypotenuse is four times the perpendicular drawn to it from the opposite vertex. The value of one of the acute angles is
1 45 o 2 30 o 3 15 o 4 None of these Go to Discussion
Solution Qus : 32
2 If ∏ n i = 1 tan ( α i ) = 1 ∀ α i ∈ [ 0 , π 2 ] where i=1,2,3,...,n. Then maximum value of ∏ n i = 1 sin ( α i ) .
1 1 2 n
2 1 2 n / 2
3 1 4 None of these Go to Discussion
Solution Qus : 33
4 Solve the equation sin2 x - sinx - 2 = 0 for for x on
the interval 0 ≤ x < 2π
1 2 3 4 None of these Go to Discussion
Solution Qus : 34
1 If t a n x 2 = t a n x 3 = t a n x 5 and x + y + z = π, then the
value of tan2 x + tan2 y + tan2 z is
1 38/3 2 38 3 114 4 None of these Go to Discussion
Solution Qus : 35
1 Find the value of sin 12°sin 48°sin 54°
1 1/8 2 1/6 3 1/2 4 1/4 Go to Discussion
Solution Qus : 37
1 The value of t a n ( 7 π 8 ) is
1 1 − √ 2 2 1 + √ 2 3 √ 2 + √ 3 4 √ 2 − √ 3 Go to Discussion
Solution Qus : 38
2 The value of
is
1 tanθ - secθ 2 tanθ + secθ 3 cotθ - secθ 4 cotθ + secθ Go to Discussion
Qus : 39
4 The value of sin 10°sin 50°sin 70° is
1 1/4 2 1/2 3 3/4 4 1/8 Go to Discussion
Solution sin10° sin50° sin70°
= sin10° sin(60°−10°) sin(60°+10°)
= 1/4 sin3x10°
=1/4x1/2=1/8
[{"qus_id":"3791","year":"2018"},{"qus_id":"3764","year":"2018"},{"qus_id":"3904","year":"2019"},{"qus_id":"3920","year":"2019"},{"qus_id":"4281","year":"2017"},{"qus_id":"4283","year":"2017"},{"qus_id":"4284","year":"2017"},{"qus_id":"4285","year":"2017"},{"qus_id":"9466","year":"2020"},{"qus_id":"9467","year":"2020"},{"qus_id":"9468","year":"2020"},{"qus_id":"9469","year":"2020"},{"qus_id":"9470","year":"2020"},{"qus_id":"9471","year":"2020"},{"qus_id":"9472","year":"2020"},{"qus_id":"9473","year":"2020"},{"qus_id":"9477","year":"2020"},{"qus_id":"10432","year":"2021"},{"qus_id":"10667","year":"2021"},{"qus_id":"10674","year":"2021"},{"qus_id":"10682","year":"2021"},{"qus_id":"10686","year":"2021"},{"qus_id":"10707","year":"2021"},{"qus_id":"11121","year":"2022"},{"qus_id":"11122","year":"2022"},{"qus_id":"11143","year":"2022"},{"qus_id":"11512","year":"2023"},{"qus_id":"11526","year":"2023"},{"qus_id":"11535","year":"2023"},{"qus_id":"11640","year":"2024"},{"qus_id":"11641","year":"2024"},{"qus_id":"10201","year":"2015"},{"qus_id":"10212","year":"2015"},{"qus_id":"10229","year":"2015"},{"qus_id":"10237","year":"2015"},{"qus_id":"10452","year":"2014"},{"qus_id":"10462","year":"2014"},{"qus_id":"10476","year":"2014"},{"qus_id":"10480","year":"2014"}]